Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca.

نویسندگان

  • Benjamin Péret
  • Ranjan Swarup
  • Leen Jansen
  • Gaëlle Devos
  • Florence Auguy
  • Myriam Collin
  • Carole Santi
  • Valérie Hocher
  • Claudine Franche
  • Didier Bogusz
  • Malcolm Bennett
  • Laurent Laplaze
چکیده

Plants from the Casuarinaceae family enter symbiosis with the actinomycete Frankia leading to the formation of nitrogen-fixing root nodules. We observed that application of the auxin influx inhibitor 1-naphtoxyacetic acid perturbs actinorhizal nodule formation. This suggests a potential role for auxin influx carriers in the infection process. We therefore isolated and characterized homologs of the auxin influx carrier (AUX1-LAX) genes in Casuarina glauca. Two members of this family were found to share high levels of deduced protein sequence identity with Arabidopsis (Arabidopsis thaliana) AUX-LAX proteins. Complementation of the Arabidopsis aux1 mutant revealed that one of them is functionally equivalent to AUX1 and was named CgAUX1. The spatial and temporal expression pattern of CgAUX1 promoter:beta-glucuronidase reporter was analyzed in Casuarinaceae. We observed that CgAUX1 was expressed in plant cells infected by Frankia throughout the course of actinorhizal nodule formation. Our data suggest that auxin plays an important role during plant cell infection in actinorhizal symbioses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation.

Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca. Here, we analyzed the role of auxin signaling in Frankia spp.-infec...

متن کامل

Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules.

Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia that lead to the formation of nitrogen-fixing root nodules. Little is known about the signaling mechanisms controlling the different steps of the establishment of the symbiosis. The plant hormone auxin has been suggested to play a role. Here we report that auxin accumulates within Frankia-infected c...

متن کامل

Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis.

Two nitrogen-fixing root nodule symbioses between soil bacteria and higher plants have been described: the symbiosis between legume and rhizobia and actinorhizal symbioses between plants belonging to eight angiosperm families and the actinomycete Frankia. We have recently shown that the subtilisin-like Ser protease gene cg12 (isolated from the actinorhizal plant Casuarina glauca) is specificall...

متن کامل

Role of auxin during intercellular infection of Discaria trinervis by Frankia

Nitrogen-fixing nodules induced by Frankia in the actinorhizal plant Discaria trinervis result from a primitive intercellular root invasion pathway that does not involve root hair deformation and infection threads. Here, we analyzed the role of auxin in this intercellular infection pathway at the molecular level and compared it with our previous work in the intracellular infected actinorhizal p...

متن کامل

Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12.

In search of plant genes expressed during early interactions between Casuarina glauca and Frankia, we have isolated and characterized a C. glauca gene that has strong homology to subtilisin-like protease gene families of several plants including the actinorhizal nodulin gene ag12 of another actinorhizal plant, Alnus glutinosa. Based on the expression pattern of cg12 in the course of nodule deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 144 4  شماره 

صفحات  -

تاریخ انتشار 2007